
Lecture-9

• One dimensional solution of Laplace’ Equation  
in cylindrical coordinate system
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Therefore we move over to the cylindrical coordinate system for
our next example.

Again, Variations with respect to  z  are nothing new, the same as 
seen in rectangular coordinates ( last example), and hence, in 
cylindrical coordinates,  we consider variations in ρ and . 

We have, in cylindrical cooridinates, the Laplace’ equation as
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We consider that V is a function of ρ only. In this case 
the Laplace’ equation in cylindrical  coordinates reduces to 

Since ρ is in the denominator, we exclude ρ = 0 from our solutions. 
Then we multiply throughout by ρ and get
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Case 1:
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Integrating once again, we get

 V A l n B,   B an arbitrary constant

From this equation, we observe that  equipotential surfaces
are given by ρ = constant and are cylinders. Example of the
problem is that of a coaxial capacitor or coaxial cable.

Let us create the boundary conditions by choosing V = Va at
ρ = a and V = 0 at  ρ = b, b > a.

Then we get from the above equation,
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Solving these two equations  for A and B we get
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Substituting these the  values of A and B in the general 
Expression for V , we get 
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Letting Vb = 0, we get
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Next we find the capacitance of the system using the 
procedure  we have used  for the parallel plate capacitor as  
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Therefore
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Therefore, 
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Therefore the capacitance per unit length of the line CL is 
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Next we consider V as a function of     only. In this case 
The Laplace’ equation in cylindrical coordinate system 
reduces to 
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i.e.,
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Excluding the value ρ = 0  this equation becomes
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Integrating both sides we get



dV
A

d

Integrating once again,  we get  V A B

This is the general equation for V when V is a function of     only. 
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From this equation, we observe that  equipotential surfaces
are given by Ф = constant and are planes To visualize this, let us choose 
Let us choose two such equipotential surfaces, V = Va at Ф = α and V = 0 
at Ф = 0. An example of the  problem is that of a corner reflector 
antenna, a very useful antenna system in communication systems. 

Insulating gap

V = Va 
at Ф = α

V = 0
at Ф = 0α Ф
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For the  chosen boundary condition, we get  
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Once again we follow the 5 step procedure to determine the 
capacitance of the system
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Note that E is a function of ρ and not of Φ. But the vector field E 
Is a function of Φ. Now, 
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and we get immediately the value for the capacitance of
the corner reflector system as
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