Lecture-9

* One dimensional solution of Laplace’ Equation

in cylindrical coordinate system
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One dimensional solution of Laplace’ Equation in

cylindrical coordinate system

Therefore we move over to the cylindrical coordinate system for
our next example.

Again, Variations with respect to z are nothing new, the same as
seen in rectangular coordinates ( last example), and hence, in
cylindrical coordinates, we consider variationsinp and . ¢

We have, in cylindrical cooridinates, the Laplace’ equation as

vay=1 9 pﬁ—v + 12 82\2 +82\£ =0 (Cylindrical)
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We consider that V is a function of p only. In this case
the Laplace’ equation in cylindrical coordinates reduces to

1 .0 [pﬁ_VJZO

L Op o

Since p is in the denominator, we exclude p = 0 from our solutions.
Then we multiply throughout by p and get

o oV
— | p=—— |=0
o o

Integrating this equation once we get,

oV oV A ,
p—=A, Or — — , Aan arbitrary constant
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Integrating once again, we get

V = Aln o+ B, Banarbitrary constant

From this equation, we observe that equipotential surfaces
are given by p = constant and are cylinders. Example of the
problem is that of a coaxial capacitor or coaxial cable.

Let us create the boundary conditions by choosing V =V, at
p=aandV=0at p=b,b>a.

Then we get from the above equation,
V =V, =Alna+B
V =V, =Alnb+B
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Solving these two equations for A and B we get

A— Va and B:Vblna—valnb

10 1

Substituting these the values of A and B in the general
Expression for V, we get

Vina—-V_,InDb
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_ Va _Vb
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Letting V, = 0, we get

V In o +
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Next we find the capacitance of the system using the
procedure we have used for the parallel plate capacitor as
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e, E=-2 a,
P In(bj
a
Hence D=gE=gYe_ 2 a =D,
b P
P In(j
a
Then
55:5\;" 1b a,=D 4, =D,4, and
In(j
a

Therefore D, =0, =—V
a

Pradeep Singla



Therefore,

Q= | pdS=ps | dS
S of one of S of one of
the plates the plates
with p=a with p=a
E 1
&’ b
a INn —
A
E 1
— _Va — 2 7 a L overalength L meters of the
a In E coaxial cable

A
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Therefore the capacitance per unit length of the line C, is

C, = 2 72-5; F/m
In —
a

Next we consider V as a function of or¢y. In this case
The Laplace’ equation in cylindrical coordinate system

d t
reauces to 1 62V 3
p° Op°
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1 dV _

l.e., > > =
P do

. , . d°Vv

Excluding the value p = 0 this equation becomes > = O
dg

Integrating both sides we get d_V — A

dg
Integrating once again, we get V=A¢g+B

This is the general equation for V when V is a function of onlyg
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From this equation, we observe that equipotential surfaces

are given by ® = constant and are planes To visualize this, let us choose
Let us choose two such equipotential surfaces, V=V, ,at®=aandV =0
at ® = 0. An example of the problem is that of a corner reflector
antenna, a very useful antenna system in communication systems.

Insulating gap
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For the chosen boundary condition, we get
V=V, =Ax+B
V=0 =A0+B . B

\V4
and A=—2

@D

Thus the general expression for V becomes

v _Va
(&4
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Once again we follow the 5 step procedure to determine the
capacitance of the system

E__wv__toV_ 1V, .

L Op L &

Note that E is a function of p and not of @. But the vector field E
Is a function of @. Now,

- — AV
D=c¢E=_2% =,
Yoo
_ R . eV, .
Ds = Dgag = Dyay = Y2
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gV,
"Dy =———"=p5
Yo lNoy

The surface integration on p. gives Q:

Q= §psds §———ds_———§ds

and we get immediately the value for the capacitance of
the corner reflector system as

dS
o s
Vv V pa

a a
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